skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Feng, Kairui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Conventional computational models of climate adaptation frameworks inadequately consider decision-makers’ capacity to learn, update, and improve decisions. Here, we investigate the potential of reinforcement learning (RL), a machine learning technique that efficaciously acquires knowledge from the environment and systematically optimizes dynamic decisions, in modeling and informing adaptive climate decision-making. We consider coastal flood risk mitigations for Manhattan, New York City, USA (NYC), illustrating the benefit of continuously incorporating observations of sea-level rise into systematic designs of adaptive strategies. We find that when designing adaptive seawalls to protect NYC, the RL-derived strategy significantly reduces the expected net cost by 6 to 36% under the moderate emissions scenario SSP2-4.5 (9 to 77% under the high emissions scenario SSP5-8.5), compared to conventional methods. When considering multiple adaptive policies, including accomodation and retreat as well as protection, the RL approach leads to a further 5% (15%) cost reduction, showing RL’s flexibility in coordinatively addressing complex policy design problems. RL also outperforms conventional methods in controlling tail risk (i.e., low probability, high impact outcomes) and in avoiding losses induced by misinformation about the climate state (e.g., deep uncertainty), demonstrating the importance of systematic learning and updating in addressing extremes and uncertainties related to climate adaptation. 
    more » « less
    Free, publicly-accessible full text available March 18, 2026
  2. In recent decades, blackouts have shown an increasing prevalence of power outages due to extreme weather events such as hurricanes. Precisely assessing the spatiotemporal outages in distribution networks, the most vulnerable part of power systems, is critical to enhancing power system resilience. The Sequential Monte Carlo (SMC) simulation method is widely used for spatiotemporal risk analysis of power systems during extreme weather hazards. However, it is found here that the SMC method can lead to large errors as it repeatedly samples the failure probability from the time-invariant fragility functions of system components in time-series analysis, particularly overestimating damages under evolving hazards with high-frequency sampling. To address this issue, a novel hazard resistance-based spatiotemporal risk analysis (HRSRA) method is proposed. This method converts the failure probability of a component into a hazard resistance and uses it as a time-invariant value in time-series analysis. The proposed HRSRA provides an adaptive framework for incorporating high-spatiotemporal-resolution meteorology models into power outage simulations. By leveraging the geographic information system data of the power system and a physics-based hurricane wind field model, the superiority of the proposed method is validated using real-world time-series power outage data from Puerto Rico, including data collected during Hurricane Fiona in 2022. 
    more » « less
  3. Climate change is expected to intensify the effects of extreme weather events on power systems and increase the frequency of severe power outages. The large-scale integration of environment-dependent renewables during energy decarbonization could induce increased uncertainty in the supply–demand balance and climate vulnerability of power grids. This Perspective discusses the superimposed risks of climate change, extreme weather events and renewable energy integration, which collectively affect power system resilience. Insights drawn from large-scale spatiotemporal data on historical US power outages induced by tropical cyclones illustrate the vital role of grid inertia and system flexibility in maintaining the balance between supply and demand, thereby preventing catastrophic cascading failures. Alarmingly, the future projections under diverse emission pathways signal that climate hazards — especially tropical cyclones and heatwaves — are intensifying and can cause even greater impacts on the power grids. High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery. Towards a net-zero future, this Perspective then explores approaches for harnessing the inherent potential of distributed renewables for climate resilience through forming microgrids, aligned with holistic technical solutions such as grid-forming inverters, distributed energy storage, cross-sector interoperability, distributed optimization and climate–energy integrated modelling. 
    more » « less
  4. Abstract Tropical cyclones (TCs) have caused extensive power outages. The impacts of TC-caused blackouts may worsen in the future as TCs and heatwaves intensify. Here we couple TC and heatwave projections and power outage and recovery process analysis to investigate how TC-blackout-heatwave compound hazard risk may vary in a changing climate, with Harris County, Texas as an example. We find that, under the high-emissions scenario RCP8.5, long-duration heatwaves following strong TCs may increase sharply. The expected percentage of Harris residents experiencing at least one longer-than-5-day TC-blackout-heatwave compound hazard in a 20-year period could increase dramatically by a factor of 23 (from 0.8% to 18.2%) over the 21 st century. We also reveal that a moderate enhancement of the power distribution network can significantly mitigate the compound hazard risk. Thus, climate adaptation actions, such as strategically undergrounding distribution network and developing distributed energy sources, are urgently needed to improve coastal power system resilience. 
    more » « less
  5. We analyze a public dataset of rescue requests for the Houston Metropolitan Area during Hurricane Harvey (2017) from the Red Cross. This dataset contains information including the location, gender, and emergency description in each requester’s report. We reveal the spatial distribution of the rescue requests and its relationship with indicators of the social, physical, and built environment. We show that the rescue request rates are significantly higher in regions with higher percentages of children, male population, population in poverty, or people with limited English, in addition to regions with higher inundation rate or worse traffic condition during Hurricane Harvey. The rescue request rate is found to be statistically uncorrelated with the percentage of flood hazard zone designated by the Federal Emergency Management Agency (FEMA). 
    more » « less
  6. null (Ed.)
  7. Abstract. On 10 September 2017, Hurricane Irma made landfall in the Florida Keys and caused significant damage. Informed by hydrodynamic storm surge and wave modeling and post-storm satellite imagery, a rapid damage survey was soon conducted for 1600+ residential buildings in Big Pine Key and Marathon. Damage categorizations and statistical analysis reveal distinct factors governing damage at these two locations. The distance from the coast is significant for the damage in Big Pine Key, as severely damaged buildings were located near narrow waterways connected to the ocean. Building type and size are critical in Marathon, highlighted by the near-complete destruction of trailer communities there. These observations raise issues of affordability and equity that need consideration in damage recovery and rebuilding for resilience. 
    more » « less